

UNIVERSITEIT·STELLENBOSCH·UNIVERSITY jou kennisvennoot · your knowledge partner

Recent developments in wave energy along the coast of southern African

James Joubert Stellenbosch University

Ocean Energy workshop 18 September 2009

Contents

- Introduction
- Industry opportunities & barriers
- Global & local wave energy resource
- Commercial projects in SA
- SWEC
- ShoreSWEC
- Way forward
- Conclusions
- Recommendations

Introduction

 \bullet

• Highest energy density of all RE sources

• Free source of non-polluting energy

· Osesses al veriale ilitera energina energinal 8 selan energina

Seasonal variability corresponds to demand (in SA)

3

Opportunities for wave energy development in SA

- SA renewable energy target of 10 000 GWh by 2013
- Abundant resource (30 50 kW/m)
- Energy security & strengthen weak coastal grid
- Strong research base dating back to the seventies
- Competent community of coastal engineers, naval architects and ship manufacturers
- Job creation

Industry barriers

- Immature, unproven technology
- Lack of collaboration between various role-players
- "Low" cost of electricity in SA
- No financial incentives
- No clear guidelines for licensing and permit requirements
- Difficult to quantify environmental impacts

Global wave power resource

World Waves data/OCEANOR/ECMWF

SA meteorology

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

7

Measured wave data analysis

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

8

Model output

- •
- •
- •

Comparison of model hindcast- to measured data

% Difference between hindcast- and measured wave data												
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean annual
4%	-6%	3%	4%	-1%	9%	9%	6%	8%	7%	-2%	1%	5%

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

10

11

Commercial developments in southern Africa

Oceanlinx: Namibia

Pelamis: Southern Cape coast

Finavera's Aquabuoy: Southwest coast

12

Stellenbosch Wave Energy Converter(SWEC)

SWEC (cont)

Barriers for full scale deployment

- Oil price stabilised
- High capital cost
- Complex licensing & permit requirements

Incorporate SWEC principle into breakwater structure for existing/new port development

- Cost sharing between breakwater & WEC
- Reduced loadings on breakwater
- Simplifies EIA
- Supply clean, free energy to development

14

ShoreSWEC

15

Site selection

Criteria

- Existing and/or new breakwater structure with suitable orientation
- Wave energy resource characteristics
- Impact on the surrounding environment and regulatory requirements
- Potential power purchaser
- Service vessels and waterfront infrastructure for system deployment, retrieval and servicing
- Proximity to device fabrication, assembly facilities and expertise
- Proximity to onshore grid interconnection points

Site selection (cont)

17

Granger Bay

Table Bay wave energy resource

Table Bay wave energy resource (cont)

19

Mean annual average wave power distribution of Table Bay based on 10 years of hindcast wave data

Table Bay wave energy resource (cont)

20

Mean annual average wave power distribution of Table Bay based on 10 years of hindcast wave data

21

Table Bay wave energy resource (cont) RENEWABLE & SUSTAINABLE ENERGY STUDIES

- Develop numerical model
- Physical model tests

Way forward (cont)

Upgrading wavemaker facilities in US hydraulic

23

Conclusions

24

- Great opportunities for wave energy development in SA, but also barriers
- SA has a world class wave energy resource
- SA has an indigenous WEC designed for local conditions
- Opportunity to demonstrate SWEC conversion principle in port development
- Wave power focal zone exist in Table Bay

Recommendations

- Support technology conceived locally instead of international developers exploiting our abundant resource
- Promote ideal of wave energy conversion in new port developments
- Increased government support

26

Mutriku

Thank you for your attention

29

Sensitivity analysis of SWAN methodology

Simulate dominant wave conditions

% Difference between values obtained through model methodology and direct method Hs = 2.6mDeep Inter Shallow Shelter SW-Tp10 5%8% 9% 5%SW-Tp12 1% 2%2%1% SW-Tp14 0% 0% 1% 1% WSW-Tp10 4%7%9% 6% WSW-Tp12 1% 2%2%2%WSW-Tp14 0% 0% 0% 1%

CONCLUSION: Model output sufficiently accurate in nearshore applications

Global wave height distribution

Literature review

Wave energy conversion (WEC) technology

Point absorber

Attenuator

Perpendicular to wave front

Terminator

• Parallel to wave front

32

SWAN computational theory

Spectral action balance equation

$\frac{\partial}{\partial t}N + \frac{\partial}{\partial x}c_{x}N + \frac{\partial}{\partial y}c_{y}N + \frac{\partial}{\partial \sigma}c_{\sigma}N + \frac{\partial}{\partial \theta}c_{\theta}N = \frac{S}{\sigma}$

Generation and dissipation source term (S) Generation

• Wind input

Dissipation

- White-capping
- Depth induced-wave breaking
- Bottom friction

Non linear wave-wave interaction

Quadruplets and triads